
Journal of Global Optimization14: 331–355, 1999.
© 1999Kluwer Academic Publishers. Printed in the Netherlands.

331

Global Optimization by Multilevel Coordinate
Search

WALTRAUD HUYER and ARNOLD NEUMAIER
Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria
(e-mail: huyer@cma.univie.ac.at, neum@cma.univie.ac.at)

(Received 7 April 1997; accepted in revised form 23 October 1998)

Abstract. Inspired by a method by Jones et al. (1993), we present a global optimization algorithm
based on multilevel coordinate search. It is guaranteed to converge if the function is continuous in the
neighborhood of a global minimizer. By starting a local search from certain good points, an improved
convergence result is obtained. We discuss implementation details and give some numerical results.

Key words: Global optimization, Bound constraints, Local optimization, Coordinate search

1. Introduction

Problems involving global optimization (traditionally usually minimization) of a
multivariate function are widespread in the mathematical modeling of real world
systems for a broad range of applications (see, e.g., Pintér 1996). Many problems
can be described only by nonlinear relationships, which introduces the possibility
of multiple local minima. The task of global optimization is to find a point where
the objective function obtains its smallest value, the global minimum. When the
objective function has a huge number of local minima, local optimization tech-
niques are likely to get stuck before the global minimum is reached, and some kind
of global search is needed to find the global minimum with some reliability. The
global optimization homepage at
http://solon.cma.univie.ac.at/~neum/glopt.html
contains many commented links to online information and software packages rel-
evant to global optimization, and a nice recent online survey of techniques is at
http://www.cs.sandia.gov/opt/survey/.

Pintér (1996) gives a good overview of methods and software for continu-
ous global optimization. Algorithms for solving global minimization problems
can be classified into heuristic methods that find the global minimum only with
high probability, and methods that guarantee to find a global optimum with a re-
quired accuracy. An important class belonging to the former type are the stochastic
methods (e.g., Boender and Romeijn 1995), which involve function evaluations at
a suitably chosen random sample of points and subsequent manipulation of the
sample to find good local (and hopefully global) minima. A number of techniques

332 W. HUYER AND A. NEUMAIER

like simulated annealing (e.g., Ingber 1989, 1996) and genetic algorithms (e.g.,
Michalewicz 1996) use analogies to physics and biology to approach the global
optimum.

The most important class of methods of the second type are branch and bound
methods. They derive their origin from combinatorial optimization (e.g.,
Nemhauser and Wolsey 1988), where also global optima are wanted but the vari-
ables are discrete and take a few values only. Branch and bound methods guarantee
to find a global minimizer with a desired accuracy after a predictable (though often
exponential) number of steps. The basic idea is that the configuration space is split
recursively bybranching into smaller and smaller parts. This is not done uniformly
but instead some parts are preferred and others are eliminated. The details depend
on bounding procedures. Lower bounds on the objective allow to eliminate large
portions of the configuration space early in the computation so that only a (usually
small) part of the branching tree has to be generated and processed. The lower
bounds can be obtained by using d.c.-methods (e.g., Horst and Tuy 1996), tech-
niques of interval analysis (e.g., Hansen 1992) or majorization resp. minorization
methods based on the knowledge of Lipschitz constants (e.g., Pintér 1996). Unlike
heuristic methods, however, these methods are only applicable if something about
the analytical properties of the objective is known, since one needs to be able to
compute powerful and reliable underestimating functions.

The algorithm we are going to describe in this paper is an intermediate between
purely heuristic methods and methods that allow an assessment of the quality of
the minimum obtained; it is in spirit similar to theDIRECT method for global op-
timization by Jones et al. (1993). As the latter method, our method is guaranteed to
converge if the objective is continuous in the neighborhood of a global minimizer;
no additional smoothness properties are required. In contrast to many stochastic
methods that operate only at the global level and are therefore quite slow, our
algorithm contains local enhancements that lead to quick convergence once the
global part of the algorithm has found a point in the basin of attraction of a global
minimizer. Moreover, for all control variables in our algorithm meaningful default
values can be chosen that work simultaneously for most problems.

In this paper, we consider the bound constrained optimization problem

minf (x)
s.t. x ∈ [u, v]

(1)

with finite or infinite bounds, where we use interval notation for rectangular boxes,

[u, v] := {x ∈ Rn | ui 6 xi 6 vi, i = 1, . . . , n},
with u andv beingn-dimensional vectors with components inR := R∪{−∞,∞}
andui < vi for i = 1, . . . , n, i.e., only points with finite components are regarded
as elements of a box[u, v] whereas its bounds can be infinite. In the case where all
bounds are infinite we obtain an unconstrained optimization problem.

MULTILEVEL COORDINATE SEARCH 333

In DIRECT, a finite box is normalized to[0,1]n and partitioned into smaller
boxes. Each box is characterized by its midpoint, and the side lengths of the boxes
are always of the form 3−k , k ∈ N0. A disadvantage of that algorithm is that
infinite box bounds cannot be handled. Moreover, since the boundary can never
be reached, it converges more slowly than necessary in cases where the minimizer
lies at the boundary. For example, in the case of functions that are monotonous
in each variable the optimizer is at a vertex, butDIRECT converges unnecessarily
slowly. Inspired byDIRECT, we devised a global optimization algorithm, where we
remedy the above shortcomings and allow for a more irregular splitting procedure.
Our algorithm is based onmultilevel coordinatesearch and we therefore call it
MCS. Note that this has nothing to do with multilevel optimization (cf. Vicente and
Calamai 1994, and Migdalas et al. 1998, for example); we use the word ‘multilevel’
in a different sense. Moreover, the multilevel search algorithm by Goertzel (1992)
also uses a different notion of levels.

In Section 2, an outline of our implementation of the MCS algorithm is given,
and details are explained in Sections 3 to 5. In Section 6 we prove the convergence
of our algorithm. Finally, numerical results are presented in Section 7. Throughout
the text, inequalities, absolute values, max and min for vectors are interpreted in
their natural componentwise meaning.

2. The MCS algorithm

We first give an overview of the ideas behind MCS and leave the discussion of
the details to Sections 3 to 5. There are many ways to design algorithms based on
these ideas and guaranteeing convergence to a global minimizer (cf. Section 6). But
trivial implementations are very slow, and a number of heuristic enhancements are
needed to obtain a high quality method. We tried several variants; in the following
we describe a specific version that performed well in our tests.

As in DIRECT, we try to find the minimizer by splitting the search space into
smaller boxes. Each box contains a distinguished point, the so-calledbase point,
whose function value is known. The partitioning procedure is not uniform but parts
where low function values are expected to be found are preferred. Since interval
subdivision is also part of what is done in branch and bound methods, our algorithm
can be regarded asbranch without bound.

Like DIRECT, our algorithm combines global search (splitting boxes with large
unexplored territory) and local search (splitting boxes with good function val-
ues). The key to balancing global and local search is the multilevel approach.
As a rough measure of the number of times a box has been processed, alevel
s ∈ {0,1, . . . , smax} is assigned to each box. Boxes with levelsmax are considered
too small for further splitting; a levels = 0 indicates that a box has already been
split and can be ignored. Whenever a box of levels (0 < s < smax) is split, its
level is set to zero, and its descendants get levels + 1 or min(s + 2, smax). Thus
the levels of MCS correspond to the side lengths ofDIRECT, i.e., the boxes with

334 W. HUYER AND A. NEUMAIER

small level are the ‘large’ boxes that have not been split very often yet. After an
initialization procedure, the algorithm proceeds by a series ofsweepsthrough the
levels (cf. Section 3). The fact that we start with the boxes at the lowest levels in
each sweep constitutes the global part of the algorithm, and at each level the box
with lowest function value is selected, which forms the local part of the algorithm.

Ratz and Csendes (1995) and Csendes and Ratz (1997) investigated a number
of rules for selecting an optimal component to bisect a box in branch and bound
methods and called these rules interval subdivision direction selection rules. The
simplest rule is the interval-width-oriented rule, which divides the original box
in a uniform way and was also used by Jones et al. (1993). However, heuristic
direction selection rules dependent on information about the variability off in
the different coordinates may yield an improvement; cf. also Hansen (1992). In
contrast toDIRECT, which usually splits a box along several coordinates, we split
along a single coordinate in each step. Information gained from already sampled
points is used to determine the splitting coordinate as well as the position of the
split. Usually a single new function evaluation is needed to split a box into two or
even three subboxes. The base points of the descendants of a box are chosen such
that they differ from the base point of the parent box in (at most) one coordinate.
Thus this procedure of generating new function values is a variant of the standard
coordinate search method. Safeguards are incorporated to prevent splits that are too
asymmetric. They ensure that the descendants of a bounded box will eventually
become arbitrarily small after sufficiently many splits along each coordinate and
that the descendants of an unbounded box will also shrink sufficiently fast.

MCS without local searchputs the base points and function values of boxes
of level smax into the so-calledshopping basket(containing ‘useful’ points).MCS
with local searchtries to accelerate convergence of the algorithm by starting local
searches from these points before putting them into the shopping basket. More
precisely, we first check whether the base point of a newly generated box of level
smax is likely to be in the basin of attraction of a local minimizer already in the
shopping basket; only if this is not the case, we start a local search from it. The
local search algorithm used in our implementation of MCS essentially consists
of building a local quadratic model bytriple searches, then defining a promising
search direction by minimizing the quadratic model on a suitable box and finally
making a line search along this direction.

In Figure 1 we show the boxes obtained by MCS for the six-hump camel func-
tion with default box bounds (cf. Section 7). The base points are indicated by fat
dots; the asterisk denotes the point obtained by local optimization and turns out to
be a global optimizer. The dashed lines are the contour lines of the function, where
the six humps are clearly discernible.

MULTILEVEL COORDINATE SEARCH 335

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 1. Result of MCS for the six-hump camel function.

3. Initialization and sweeps

Unlike in DIRECT, a base point can belong to more than one box, and the base
point of a box in our algorithm is usually not the midpoint but a point at the
boundary, often but not always a vertex. Moreover, we also assign to each box
anopposite point. The construction is such that the base pointx and the opposite
pointy determine the box, and we call such a boxB[x, y].

The algorithm starts with a so-calledinitialization procedureproducing an ini-
tial set of boxes. Whenever a box is split along some coordinatei for the first
time (either in the initialization procedure or later), this is done at three or more
user-defined valuesxli (where function values are computed) and some adaptively
chosen intermediate points, and at least four subboxes are obtained. More precisely,
let

ui 6 x1
i < x

2
i < · · · < xLii 6 vi, Li > 3, i = 1, . . . , n,

be given. We first evaluatef at an initial pointx0 and setx∗ = x0. Then, for
i = 1, . . . , n, f is evaluated atLi − 1 points in[u, v] that agree withx∗ in all
coordinatesk 6= i. Thus we haveLi pairs(xl, f li) (l = 1, . . . , Li) with

xlk = x∗k (k 6= i),
f li = f (xl),

andx∗ = xli for someli. The point with smallest function value is then renamed
x∗ before repeating the procedure with the next coordinate. The numbersxli , l =

336 W. HUYER AND A. NEUMAIER

1, . . . , Li, and the indicesli are stored in aninitialization list. The choice of the
initialization list is left to the user, who may incorporate in it knowledge about the
likely distribution of good points. A good guess for the global optimizer can be
used asx0. Some possible choices are discussed in Section 7.

From the initialization list and the corresponding list of function values, an
initial set of boxes is constructed as follows. The root box isB[x, y] = [u, v], with
x = x0 as base point and asy one of the corners of[u, v] farthest away fromx. Note
thatx need not be a vertex and that some or all coordinates ofy can be infinite. For
i = 1, . . . , n, the current box is split along theith coordinate into 2Li −2, 2Li −1
or 2Li subintervals with exactly one of thexli as endpoints, depending on whether
two, one or none of thexli are on the boundary, which means that in addition toxli ,
l = 1, . . . , Li, we have to split atzli, l = 2, . . . , Li. The additional splitting points
are chosen aszli = xl−1

i + qk(xli − xl−1
i), l = 2, . . . , Li, whereq = 1

2(
√

5− 1) is
the golden section ratio andk = 1 or 2 is chosen such that the part with the smaller
function value gets the larger fraction of the interval. The resulting subboxes get
as base point the pointx′ obtained from the currentx = x∗ by changingxi to
thexli that is a boundary point of the correspondingith coordinate interval, so that
f (x′) = f li , and as opposite point the point obtained fromy by changingyi to the
other end of that interval.

The information available so far allows us to define priorities on the coordinates.
For eachi, we compute the union of the ranges of the quadratic interpolant through
any three consecutive(xli , f

l
i) and take the difference of the upper and lower bound

obtained as a crude measure of the variability off with the ith component. Com-
ponents with higher variability get a higher priority, and this ranking is saved in
a vectorπ such that the component with indexi has theπith highest estimated
variability. Moreover, if thex∗ obtained after splitting theith coordinate belongs
to two boxes, the one containing the minimizer of the quadratic models is taken as
current box for coordinatei + 1.

The root box gets level 1. When a box of levels is split, the boxes with the
smaller fraction of the golden section split get levels + 2 and all other boxes get
level s + 1. Thus the current box for splitting in the next coordinate is in any case
one with levels + 1, and after finishing the initialization procedure, the first level
is empty and the non-split boxes have levels 2, . . . , n + 2, which implies that it is
meaningful to takesmax� n. Two examples for the set of boxes, their base points
and their levels after the initialization procedure in the two-dimensional case are
shown in Figure 2, wherex1

i = ui , x2
i = 1

2(ui + vi), x3
i = vi (left-hand side) and

x1
i = 5

6ui + 1
6vi, x

2
i = 1

2(ui + vi), x3
i = 1

6ui + 5
6vi (right-hand side); in both cases

we havex0 = 1
2(u+ v).

It is easy to see the connection between the golden section split and the assign-
ment of levels. When a boxB with level s is split along coordinatei according to
the golden section split and its larger partB ′ is again split according to the golden
section split along theith coordinate, the larger descendant ofB ′ has the sameith
coordinate length as the smaller descendant ofB, and these boxes both have level

MULTILEVEL COORDINATE SEARCH 337

r r r

r

r

3 32

4

4

3

3 r r r
r

r
2 2 23 3

3

3

3

3

4

4

Figure 2. Examples for the initialization procedure.

s + 2. Moreover, the box with the better function value gets the larger fraction of
the interval and the smaller level because then it is more likely to be split again
more quickly, which was also the strategy adopted inDIRECT.

Any choice ofxli including the endpointsui , vi in the list guarantees that, in the
simple case thatf is monotonous in each variable, the finalx∗ of the initialization
phase is already the global minimizer.

At least three values ofxli are needed in order to determine the ranksπi by quad-
ratic interpolation. It is reasonable to make the first splits along each coordinate at
some predetermined values since heuristic determination of an optimal split of a
wide interval would not be very reliable anyway.

After the initialization procedure, the branching process proceeds by a series of
sweepsthrough the levels. A sweep is defined by the following three steps.

Step 1.Scan the list of non-split boxes and define arecord list containing for
each level 0< s < smax a labelbs pointing to a box with the lowest function value
among all boxes at levels. If there is no box at levels, setbs = 0. Initialize s to
the lowest level withbs 6= 0.

Step 2.The box with labelbs is a candidate for splitting. If the box is not split
(according to the rule given in Section 4), its level is increased by one and possibly
bs+1 has to be updated. If the box is split, mark it as split and insert its children.
Update the record list if any of the children yields a strict improvement off on its
level.

Step 3.Increases by 1. If s = smax, start new sweep. Else ifbs = 0 go to Step
3, else go to Step 2.

Clearly, each sweeps ends after at mostsmax− 1 visits of Step 3.

4. Splitting

Instead of storing the box bounds for each box we store information on its history
(label of the parent box, splitting index, splitting value, a label identifying which
of the many children it is etc.). This keeps the amount of storage proportional to
the number of function evaluations and allows us to recover information to build a
separable quadratic model by going back in the history of the box. When a box of

338 W. HUYER AND A. NEUMAIER

level s < smax is a candidate for splitting (cf. Section 3), we recover its base point
x, the opposite pointy and the numbernj of times coordinatej has been split in
the history of the box. We distinguish two cases.

Case 1 (splitting by rank).If

s > 2n(minnj + 1), (2)

the box is always split, and the splitting index is a coordinatei with ni = minnj .
Case 2 (splitting by expected gain).Otherwise, the box may be split along a co-

ordinate where the maximal gain in function value is expected according to a local
separable quadratic model obtained by fitting 2n + 1 function values. However,
if the expected gain is not large enough, the box is not split at all but its level is
increased by one.

A box that is not eligible for splitting by expected gain will eventually reach
level 2n(minnj + 1)+ 1 and be split by rank providedsmax is large enough. Thus,
for smax → ∞, the splitting by rank rule guarantees that each coordinate is split
arbitrarily often. (Many other thresholds in place of (2) would provide the same
conclusion; cf. also Section 6.)

In order to handle correctly the adaptive splitting points and unbounded in-
tervals we introduce some more notation. Suppose that we want to split theith
coordinate interval

ut{xi, yi} := [min(xi, yi),max(xi, yi)]
for xi ∈ R, yi ∈ R, and suppose thatxi is theith component of the base point of
the box being considered. Since the descendants of a box should shrink sufficiently
fast, we may not split too close toxi. If yi is large, we also do not want the new
componentx′i to be too large and therefore force it to belong to some smaller
intervalut{ξ ′, ξ ′′}. We choose this interval according to

ξ ′′ := subint(xi, yi), ξ ′ := xi + (ξ ′′ − xi)/10, (3)

where

subint(x, y) :=
 sign(y) if 1000|x| < 1, |y| > 1000,

10 sign(y)|x| if 1000|x| < 1, |y| > 1000|x|,
y otherwise.

(4)

We are now ready to describe the two splitting rules in more detail.

4.1. SPLITTING BY RANK

Let s > 2n(minnj + 1). This means that, although the box has already reached
a rather high level, there is at least one coordinate along which the box has not
yet been split very often. Then we select the splitting indexi among the indicesi

MULTILEVEL COORDINATE SEARCH 339

with smallestni as the one with lowestπi (and hence highest variability rank). The
name ‘splitting by rank’ thus refers to the ranking of the coordinates byni andπi.

If ni = 0, the splitting is done according to the initialization list atxli , l =
1, . . . , Li, and at the golden section split points, as discussed in Section 3, and
the new base points and opposite points are defined as before. The boxes with the
smaller fraction of the golden section split (and thus larger function values) get
level min(s + 2, smax), and all other ones get levels + 1.

If ni > 0, theith component ranges betweenxi andyi, and the splitting value
is chosen aszi = xi + 2

3(ξ
′′ − xi), whereξ ′′ := subint(xi, yi) is given by (4). The

box is split atzi and at the golden section split point, and we obtain three parts
with only one additional function evaluation at the pointx′ obtained by changing
the ith coordinate ofx to zi. The smaller fraction of the golden section split gets
level min(s + 2, smax), and the two other parts get levels + 1. Moreover, the base
point of the first child is taken to bex, the base point of the second and third child
is the pointx′ defined above, and the opposite points are obtained by changingyi
to the other end of theith coordinate interval of the corresponding box. Since this
split is mainly made to reduce the size of a large interval and not for an expected
large reduction in function value, we do not try to determine an optimalzi but take
a value that is predetermined by the box bounds. The factor2

3 is motivated by the
fact that the box is split into three parts, where the second split is made betweenxi
andzi.

4.2. SPLITTING BY EXPECTED GAIN

If s 6 2n(minnj + 1), we determine the optimal splitting index and position of
the split from a local separable quadratic model, which is a reasonably simple local
approximation off . To this end we need two additional points and corresponding
function values for each coordinate. Whenever we have split in theith coordinate in
the history of the box, we obtain values that can be used for quadratic interpolation
in this coordinate. For each coordinate we take the first two points and function
values found by pursuing the history of the box back to[u, v] since these points
are expected to be closest to the base pointx. For coordinates that have not yet
been split, we obtain this information from the initialization list. Let

e(ξ) = f (x)+
n∑
i=1

ei(ξi)

be the local separable model forf (ξ) generated by interpolation atx and the 2n
additional points collected as above. For each coordinatei, we define theexpected
gain êi in function value when we evaluate at a new point obtained by changing
this coordinate in the base point. Again two cases have to be distinguished.

Case 1.In the history of the current box, coordinatei was never split, i.e.,ni =
0. Then we split according to the initialization list at points where we already know

340 W. HUYER AND A. NEUMAIER

the obtainable function differences, and therefore compute the expected gain as

êi = min{f li | l = 1, . . . , Li} − f lii .
Case 2.If ni > 0, theith component ranges betweenxi andyi , and with the

quadratic partial correction function

ei(ξi) = αi(ξi − xi)+ βi(ξi − xi)2

at our disposal, we can calculate an approximation to the maximal gain expected
when changing the value ofxi only. For the reasons discussed above, we choose
the splitting value from the intervalut{ξ ′, ξ ′′} defined by (3). Then we compute

êi = min
ξi∈ut{ξ ′,ξ ′′}

ei(ξi)

with minimum achieved atξi = zi. If the expected best function value satisfies

fexp := f (x)+ min
16i6n

êi < fbest, (5)

wherefbest is the current best function value (including the function values ob-
tained by local optimization), we expect the box to contain a better point and split,
using as splitting index the component with minimalêi . Condition (5) prevents
wasting function evaluations by splitting boxes with bad base point function values;
these boxes will eventually be split by rank anyway.

In Case 1 we again split according to the initialization list, and the definition of
the new base points and opposite points and the assignment of levels are as before.
In Case 2 we usezi as splitting value and the box is split atzi (if zi 6= yi) and at the
golden section split point, and we obtain two or three parts. The larger fraction of
the golden section split gets levels +1, the smaller fraction level min(s+ 2, smax).
If zi 6= yi and the third part is larger than the smaller fraction of the golden section
split, it gets levels + 1; otherwise it gets level min(s + 2, smax). Moreover, the
base point of the first child is taken to bex, the base point of the second and
third (if zi 6= yi) child is obtained by changing theith coordinate ofx to zi, and
the opposite points are again obtained by changingyi to the other end of theith
coordinate interval of the box.

If (5) is violated, we do not expect any improvement and therefore do not split
but increase the level by 1.

5. Local search

The theory of local optimization provides powerful tools for the task of optimizing
a smooth function when knowledge of the gradient or even the Hessian is assumed.
When no derivative information is available but the function is known to be twice
continuously differentiable, the traditional methods are based on the employment

MULTILEVEL COORDINATE SEARCH 341

of successive line searches, using search directions defined by minimizing quad-
ratic models built from conjugate directions; cf. the direction set method of Powell
(1964) and a modification due to Brent (1973). These algorithms, however, do not
allow the specification of bound constraints. Elster and Neumaier (1995) developed
an algorithm for optimization of low-dimensional bound constrained functions,
based on the use of quadratic models and a restriction of the evaluation points
to successively refined grids. However, the work in that algorithm grows with the
dimensionn asO(n6) and hence is unsuitable for larger dimensions.

The local optimization algorithm we are going to describe in the sequel also
makes use of quadratic models and successive line searches, and devices to handle
bound constraints are incorporated. We first explain two important ingredients of
our local search algorithm: the procedure of building a local quadratic model by
triple searches and the coordinate search procedure.

5.1. TRIPLE SEARCH

While quadratic models are most appropriate when the function to be optimized is
smooth enough, they seem to be useful also in general (cf. the two discontinuous
examples in Table 6 below). We want to use

(
n+2

2

)
function values to construct a

quadratic model

q(x) = f + gT (x − xbest)+ 1

2
(x − xbest)TG(x − xbest),

which is hoped to be a good local approximation off . The triple search does not
only aim at constructing a quadratic model but also at reducing the function value.

Assume that we have three vectorsxl < xm < xr . The function values are to be
taken at pointsx with xi ∈ {xli , xmi , xri } (hence the name ‘triple search’) as follows.
If xbestdenotes current best point in the triple search, denote byx(i,1) andx(i,2) the
points obtained fromxbest by changing itsith coordinate to the other two values
in {xli , xmi , xri }, and byxik , k < i, the points obtained by changing theith and
kth coordinate to the ones with the smallerq(x(i)) resp.q(x(k)) with the current
quadratic modelq. Thus we obtain the following procedure that we are going to
describe in more detail in the sequel:

342 W. HUYER AND A. NEUMAIER

f = f (xbest)

for i = 1 to n
computef (x(i,1)) andf (x(i,2)); computegi andGii

storexnewbestbut do not updatexbest

for k = 1 to i − 1

computeq(x(k,1)) andq(x(k,2)) from the current model

computef (xik)

updatexnewbestbut do not updatexbest

computeGik

end for
if xnewbest 6= xbest, updatexbest, f andg1:i ; end if

end for

When, for ani, 1 6 i 6 n, we have already computed approximations forgl
andGlk, l = 1, . . . , i − 1, k = 1, . . . , l, by interpolating at

(
i+1

2

)
points that differ

only in the firsti − 1 components, andxbest is the current best point in the triple
search, we obtain approximations forgi andGii by determining these numbers
such that the quadratic polynomial

p(ξ) = f (xbest)+ gi(ξ − xbest
i)+ 1

2
Gii(ξ − xbest

i)2

interpolates at(x(i,j)i , f (x(i,j))), j = 1,2. If min(f (x(i,1)), f (x(i,2))) < f (xbest),
we may not yet updatexbest (this would invalidate the previous computations), but
we store the new best point asxbestnew.

Assume that, in addition, we have already calculated approximations forGil ,
16 l 6 k − 1, for ak, 16 k 6 i − 1. Then we can compute

q(x(k,j)) = f (xbest)+ gk(x(k,j)k − xbest
k)+ 1

2
Gkk(x

(k,j)

k − xbest
k)2, j = 1,2,

with the current quadratic modelq, and we haveq(x(i,j)) = f (x(i,j)), j = 1,2.
Let xik be defined as above. Then we chooseGik = Gki such that the quadratic
model interpolates atxik , i.e., such that the equation

f (xik) =f (xbest)+ gk(xikk − xbest
k)+ gi(xiki − xbest

i)

+ 1

2
Gkk(x

ik
k − xbest

k)2+Gik(x
ik
k − xbest

k)(xiki − xbest
i)

+ 1

2
Gii(x

ik
i − xbest

i)2

is satisfied. Again we do not updatexbest but updatexbestnewif xik yields a strict
improvement in function value.

MULTILEVEL COORDINATE SEARCH 343

After finishing the loop overk, we reexpand the model around the new best
point by

gk = gk +
i∑
l=1

Gkl(x
bestnew
l − xbest

l), k = 1, . . . , i,

xbest= xbestnew, f = f (xbestnew).

It is easy to see that the above method gives the unique quadratic interpolant to
f at

(
n+2

2

)
distinct points; in particular, we recover the exact objective function as

q(x) = f (x) wheneverf is quadratic.
An optional input parameter handles the case whereknowledge about the sparsity

patternof the Hessian is assumed. If we know thatGik is zero for somek < i, we
can omit a step in the inner for-loop of the triple search procedure. For sufficiently
sparse Hessians, this saves a large fraction of function values spent in the local
optimizations.

In a diagonal triple searchwe only carry out the diagonal part of the above
algorithm and take the off-diagonal elements of the Hessian from the previous
iteration; thus only 2n additional function values are needed.

5.2. COORDINATE SEARCH

In order to findxl, xm, xr for the triple search, we sometimes use acoordinate
searchbased on a line search routine. A MATLAB 4.2 version of the actual line
search used can be obtained electronically from
http://solon.cma.univie.ac.at/~neum/software/gls.
The univariate line search programgls contains a parametersmaxls limiting the
number of points used for the line search. It is possible to feed other points in
addition to the starting point and their function values into the program, and these
points are included insmaxls.

A line search withsmaxls = 6 is made along each coordinate. The first line
search is started with the candidate for the shopping basket. After the line search
along the first coordinate, we can take the best point and its two nearest neighbors
on both sides (or, if such points do not exist, the two nearest neighbors on one side)
as{xl1, xm1 , xr1}. The subsequent line searches are started with the current best point
obtained from the previous line search. After a line search in a coordinatei > 1,
we take the best point, the starting point of the line search (if it is different from
the best point) and, if possible, the nearest neighbor of the best point on the other
side as{xli , xmi , xri }. Theith coordinate of the oldxbesthas to be among{xli , xmi , xri }
since otherwise we would lose all points through which the surface has been fitted
previously.

344 W. HUYER AND A. NEUMAIER

5.3. LOCAL SEARCH

Now we have all ingredients at our disposal to describe the steps of the local search
algorithm used in our implementation of MCS.

In Step 1 below we start with looking for better points without being too local
yet and therefore determinexl, xm, xu for the triple search by a coordinate search.
In Step 2 we calculate the minimizer of the quadratic model, hoping that it yields
a good point, and make a line search along this direction. Step 3 controls the loop
over the subsequent iterations of building a quadratic model by a triple search (Step
5) and making a line search (Step 6). The difference between Step 1 and Step 5 is
that in Step 5 the values for the triple search are taken at small distancesδ. Step 4
takes care of the boundary.

In the followingx andf always denote the current point and its function value,
respectively.

Step 1.Starting with the candidate for the shopping basket, we make a full triple
search, wherexl, xm, xr are found by a coordinate search as described above. This
procedure yields a new pointx, its function valuef , an approximationg of the
gradient and an approximation of the HessianG.

Step 2.Initially we taked := min(v − x, x − u,0.25(1 + |x − x0|)), where
x0 is the absolutely smallest point in[u, v], and minimize the quadratic function
q(h) := f + gT h+ hTGh over the box[−d, d]. Then we make a line search with
gls alongx+αp, wherep is the solution of the minimization problem. The values
α = 0 andα = 1 are used as input forgls, and the new point and function value
are again denoted byx andf , respectively. Setr := (fold − f)/(fold − fpred),
wherefold is the function value of the current point at the beginning of Step 2 and
fpred is the function value predicted by the above quadratic model withα = 1.
Sincer = 1 if f = fpred, the deviation ofr from 1 measures the predictive quality
of the quadratic model.

Step 3.Stop if some limit on the number of visits to Step 3 (per local search) or
the limit on function calls has been exceeded. Also stop if none of the components
of the currentx are at the boundary, the last triple search was a full one and a
stopping criterion (see below) is fulfilled.

Step 4.If some components of the currentx are at the boundary and the stopping
criterion is fulfilled, we make line searches with at mostsmaxls points along these
coordinates. If the function value was not improved by these coordinate searches,
stop.

Step 5.If |r−1| > 0.25 or the stopping criterion was fulfilled in Step 3, we make
a full triple search, otherwise we make a diagonal triple search. We make these
triple searches only in the coordinatesi such that the componentxi of the current
x is not at the boundary. The set{xli , xmi , xri } is taken to consist ofxi , max(xi −
δ, ui) and min(xi + δ, vi) (resp. two neighbors at distanceδ and 2δif xi lies at the
boundary) andδ = 3

√
ε, whereε denotes the machine accuracy. We obtain a new

pointx and an approximation of its reduced gradientg and its reduced HessianG.

MULTILEVEL COORDINATE SEARCH 345

Step 6.If r < 0.25, the last quadratic model was not very good and we therefore
shrink the box for minimization by settingd = d/2. On the other hand, ifr > 0.75,
the search direction from the quadratic model was rather good and we setd = 2d.
We now minimize the quadratic functionq given in Step 2 over[max(−d, u −
x),min(d, v− x)] and make a line search alongx +αp, wherep is the solution of
the minimization problem, withα = 0 and α= 1 as input as before. The quantity
r is defined as in Step 2, where nowfold is the function value at the current point
at the beginning of Step 6, and go to Step 3.

The stopping criterion in Step 3 is defined to be fulfilled if the function value
has not been improved by Steps 5 and 6 (resp. Steps 1 and 2) or if the approximated
gradient is small, in the sense that|g|T max(|x|, |xold|) < γ (f − f0), whereγ is
an input parameter of our program andf0 is the smallest function value found in
the initialization procedure. When some components of the currentx are at the
boundary and the stopping criterion is fulfilled, we make an attempt in Step 4 to
get away from the boundary, and when we are not successful, the algorithm stops.

If the ratior of the actual to the predicted gain in function value in the previous
step is far away from 1, this is an indicator that the quadratic model was not very
good and we therefore make a full triple search. However, whenr is reasonably
close to 1, the last quadratic model was a rather good approximation and we there-
fore save function values by taking over the off-diagonal elements of the Hessian
from the previous quadratic model. In Step 2, the quadratic model is minimized
over a not too large initial box, and the box is made larger or smaller depending on
r.

In Steps 2 and 6, we use a routine for indefinite quadratic programming with
bound constraints since there is no guarantee thatG is positive definite. A MAT-
LAB 4.2 programminq for doing this is available from
http://solon.cma.univie.ac.at/~neum/software/minq/.

5.4. SHOPPING BASKET

The local searches are only carried out at the end of each sweep. Then all candidates
for the shopping basket (i.e., all base points of boxes with levelsmax) that have been
collected in this sweep are sorted by ascending function value. For each candidatex

for the shopping basket, we check the monotonicity properties off betweenx and
any pointw already in the shopping basket by evaluatingf at two uniformly spaced
points betweenx andw to avoid unnecessary local optimization. The procedure is
described by the following four steps, where the letterx is used for candidates
for the shopping basket (and their updates) andw denotes points already in the
shopping basket. In Step 4, a neww may be added, which has to be considered in
the subsequent iterations of Steps 1 to 4.

Step 1.We first check whether we have already made a local search fromx.
(Often a point belongs to two boxes.) If this is the case, we take the nextx and go
to Step 1.

346 W. HUYER AND A. NEUMAIER

Otherwise, let the pointsw already in the shopping basket be sorted by their
distance tox, starting with the nearest point. For eachw such thatf (w) 6 f (x)

we do the following.
Step 2.Compute the function value atx′ = x + 1

3(w − x). If f (x′) > f (x), x
does not lie in the domain of attraction ofw. Take the next pointw and go to Step
2.

Step 3.Compute the function value atx′′ = x+2
3(w−x). If f (x′′) > max(f (x′),

f (w)), setx = x′ if f (x′) < f (x), take the next pointw and go to Step 2. Else if
min(f (x′), f (x′′)) < f (w), all four points seem to lie in the same valley. However,
we do not discardx for local search but setx to the valuex′ or x′′ with the smaller
function value, take the next pointw and go to Step 2. Else (there seems little point
to start a local search fromx because the four function values are monotonous) we
take the nextx and go to Step 1.

Step 4.If a pointx (resp. its update) survives the loop over Steps 2 and 3, a local
search is started. Subsequently, we apply a procedure similar to Steps 2 and 3 to
the resultx of local search in order to find out whether we have really found a new
point, and only in this casex is put into the shopping basket.

6. Convergence of the algorithm

If the number of levelssmax goes to infinity, MCS is guaranteed to converge to the
globally optimal function value if the objective function is continuous – or at least
continuous in the neighborhood of a global optimizer. This follows from the fact
that then the set of points sampled by MCS forms a dense subset of the search
space. That is, given any pointx ∈ [u, v] and anyδ > 0, MCS will eventually
sample a point within a distanceδ from x.

Indeed, in each sweep one box leaves the lowest non-empty level and no box
is added at that level. Each level will eventually become empty; in particular the
splitting procedure will come to an end when all non-split boxes have levelsmax.
Condition (2) for splitting by rank together with the fact that by splitting the levels
advance by at most two guarantees that each box with levels > 2n(m+1)+2mn,
m ∈ N0, has been split at leastm times in each coordinate (proof by induction over
m). Moreover, the safeguards against too narrow splits guarantee that the boxes
containing any pointx ∈ [u, v] shrink sufficiently fast after sufficiently many
splits. More precisely, for eachδ > 0 and i= 1, . . . , n, there exists anmi(δ) ∈ N
such that theith side length of the box containingx is less thanδ if it has been split
at leastmi(δ) times along theith coordinate.

These properties give the following convergence theorem for MCS without local
search.

THEOREM 1. Suppose that the global minimization problem(1) has a solution
x̂ ∈ [u, v], and thatf : [u, v] → R is continuous in a neighborhood ofx̂, and
let ε > 0. Then there exists ans0 such that for eachsmax > s0, the algorithm will

MULTILEVEL COORDINATE SEARCH 347

eventually find a base pointx with f (x) < f (x̂)+ ε; i.e., the algorithm converges
if the number of levels tends to∞.

The worst case of ‘eventually’ in the above theorem is reached when all levels
s < smax are empty and the algorithm is done. It is not difficult to show that the
number of sweeps needed for finding such a point is at most(ps0−1 − 1)/(p − 1),
wherep is the upper bound on the number of boxes generated in one splitting step
(determined by the initialization list since a ‘regular’ split does not produce more
than 3 boxes). Of course, such an exponential worst case bound is expected in view
of the NP-hardness of the global optimization problem (cf. Vavasis (1995)).

For theMCS algorithm with local searchwe obtain a stronger result if we make
the obviously idealized assumption that the local search algorithm reaches a local
minimizer after finitely many steps if it is started in its basin of attraction and if the
function values at the nonglobal local minimizers are sufficiently separated from
the global minimum.

THEOREM 2. In addition to the assumptions of Theorem 1, assume that there is
an ε > 0 such thatf (y) > f (x̂)+ ε for any nonglobal local minimizery and for
anyy ∈ [u, v] with sufficiently large norm. Then there exist numbersL andS such
that, for anysmax > L, MCS with local search finds a global minimizer after at
mostS sweeps.

Note that the assumption onf only excludes pathological optimization prob-
lems where a global optimizer is at infinity or where the set of nonglobal local
optima has the global optimum as an accumulation point.

7. Numerical results

7.1. TEST FUNCTIONS

Jones et al. (1993) gave an extensive comparison of theirDIRECT method with
various methods on seven standard test functions from Dixon and Szegö (1978)
and two test functions from Yao (1989). Since our MCS algorithm is based on
important insights from Jones et al. (1993), we first consider the same test set to
evaluate the efficiency of MCS. For each test function, the dimensions and box
bounds, used by Jones et al. (1993) but inadvertently omitted in Jones et al. (1993),
are given in Table 1. We thank Don Jones for providing us with the code of the test
functions.

Table 2 records the number of function calls needed for convergence. This is
not the only way of assessing the quality of an algorithm, but it is an important one
in the case of most real life applications, where function evaluations are expensive.
All but the last four lines of Table 2 are taken from one of the tables of results
of Jones et al. (1993); missing entries were not available from the literature. The
first 11 algorithms already appeared in the 1978 anthology edited by Dixon and
Szegö (1978) and are therefore somewhat old. The fourth last line contains results

348 W. HUYER AND A. NEUMAIER

Table 1. Dixon and Szegö (1978) functions: dimensions and box bounds

Label Test function Dimension Default box bounds

Sm (m = 5, 7 or 10) Shekelm 4 [0, 10]4
Hn (n = 3 or 6) Hartmann n [0,1]n
GP Goldstein–Price 2 [−2, 2]2
BR Branin 2 [−5, 10]×[0, 15]
C6 Six-hump camel 2 [−3, 3]×[−2, 2]
SHU Shubert 2 [−10,10]2

for the differential evolution algorithm DE by Storn and Price (1997); we used the
MATLAB programdevec2.m from
http://http.icsi.berkeley.edu/~storn/code.html
with the default values for the control parameters. The number of function evalu-
ations needed for convergence was averaged over 25 runs for each test function. In
the case of Hartman6, one run did not converge after 12 000 function evaluations
and we averaged only over the remaining 24 runs. The last three lines give results
for MCS, first over the same bound constraints as in Jones et al. (1993), then
averages over randomly perturbed box bounds, and finally for the unconstrained
version. Details will be given below.

7.2. TERMINATION

In the presentation of test results, methods are usually compared on the basis of
their performance on problems with known solutions. The algorithm is terminated
when a function value within some tolerance of the global minimum has been
found, and we also adopt this strategy. However, in practical problems, one does
not know the solution in advance and needs a criterion that tells the program when
to stop searching for a better local minimizer. This criterion should be stringent
enough that it does not waste too many function values after the global minimum
has been found, but it should also be loose enough to ensure that in typical cases,
the algorithm does not terminate before the global minimizer has been found.

Stochastic approaches to the design of suitable stopping criteria are surveyed in
Section 6 of Boender and Romeijn (1995). One of the methods proposed there con-
sists in stopping when the numberm of local searches done is larger than a function
N(w) of the numberw of different local minima found so far. The functionN(w)
depends on the assumptions, and several specific implicit definitions ofN(w) are
given in Boender and Romeijn (1995). This result is theoretically justified for the
random multiple start method only but may serve as a guideline also for other
methods that use local searches.

MULTILEVEL COORDINATE SEARCH 349

Table 2. Number of function calls for various methods compared to MCS

Method S5 S7 S10 H3 H6 GP BR C6 SHU

Bremmerman (a) (a) (a) (a) (a) (a) 250

Mod. Bremmerman (a) (a) (a) (a) 515 300 160

Zilinskas (a) (a) (a) 8641 5129

Gomulka–Branin 5500 5020 4860

Törn 3679 3606 3874 2584 3447 2499 1558

Gomulka–Törn 6654 6084 6144

Gomulka–V.M. 7085 6684 7352 6766 11125 1495 1318

Price 3800 4900 4400 2400 7600 2500 1800

Fagiuoli 2514 2519 2518 513 2916 158 1600

De Biase–Frontini 620 788 1160 732 807 378 587

Mockus 1174 1279 1209 513 1232 362 189

Bélisle et al. (1990) (b) 339 302 4728 1846

Boender et al. (1982) 567 624 755 235 462 398 235

Snyman–Fatti (1987) 845 799 920 365 517 474 178

Kostrowicki–Piela (1991) (c) (c) (c) 200 200 120 120

Yao (1989) 1132< 6000

Perttunen (1990) 516 371 250 264 82 97 54 197

Perttunen–

Stuckman (1990) 109 109 109 140 175 113 109 96 (a)

Jones et al. (1993) 155 145 145 199 571 191 195 285 2967

Storn–Price (1997) (d) 6400 6194 6251 476 7220 1018 1190 416 1371

MCS (e) 83∗ 129∗ 103∗ 79∗ 111∗ 81∗ 41∗ 42∗ 69∗

MCS (f)(d) 582 633 595 131 113 94 51 37 566

MCS (g)(e) 196∗ 196∗ 330 128 (c) 194∗ 57∗ 44∗ 48∗

(a) Method converged to a local minimum.
(b) Average evaluations when converges. For H6, converged only 70 % of time.
(c) Global minimum not found with less than 12 000 function calls.
(d) Average over 25 cases. For H6, average over 24 cases only; one case did not con-
verge within 12 000 function values.
(e) An asterisk indicates that the first local optimization gave the global optimum.
(f) Perturbed box bounds
(g) Unconstrained problem.

However, with MCS we try to do very few local optimizations only, and this
reasoning appears inadequate. So far, we have not yet found a useful general pur-
pose stopping criterion for MCS. For the purposes of the numerical tests reported
here, the stopping criterion for MCS was taken as obtaining a relative error<

0.01 % in the optimal objective function value (which happens to be nonzero al-
ways), i.e.,(f − fglob)/|fglob| < 10−4, which was also the criterion used by Jones

350 W. HUYER AND A. NEUMAIER

et al. (1993), Perttunen (1990), and Perttunen and Stuckman (1990). Since the DE
algorithm of Storn and Price (1997) operates only at the global level, it takes a
rather long time to find a minimum with high accuracy and therefore we used
obtaining a relative error< 1 % as stopping criterion. For the algorithms quoted
in Jones et al. (1993), results based on the definition of convergence used by their
authors are reported.

7.3. MCS CONTROL PARAMETER SETTINGS

We applied a MATLAB version of MCS withsmax = 5n + 10, wheren is the
dimension of the problem, andsmaxls = 15 to the test functions and used a simple
initialization list consisting of midpoint and boundary points, i.e.,

x1
i = ui, x2

i = (ui + vi)/2, x3
i = vi, li = 2.

The limit on visits to Step 3 per local search was set to 50, and the parameterγ in
the stopping criterion for local optimization was taken asγ = 10−18 (cf. Subsection
5.3). Note that all examples have been run with identical parameter settings, so that
no tuning to the individual test problems was involved. For running MCS without
local search, we would have to take a largersmax (i.e., a larger number of levels)
to reach the global minimum with the desired accuracy since then all of the local
search has to be done by MCS.

7.4. MODIFIED BOUNDS

We also investigated the stability of our results for MCS with respect to random
perturbations of the box bounds. Instead of the default box bounds[u, v] given in
Table 1, we employed the box bounds[u′, v′] given by

u′i = ui + 0.5η(vi − ui), v′i = vi + 0.5η(vi − ui), i = 1, . . . , n,

whereη is a random variable that is uniformly distributed in the interval[−0.5,0.5],
but a value ofη was only accepted in a given problem if at least one of the global
minimizers was in[u′, v′]. The results given in the second last line of Table 2 were
taken as an average over 25 runs with different perturbed box bounds for each
test function. For Hartman6, we obtained one outlier for which the algorithm had
not found the global minimum after 12 000 function calls, and we report a result
averaged over the 24 remaining runs.

Moreover, we applied MCS to the unconstrained optimization problem for the
Dixon and Szegö (1978) test set and added the results to Table 2. In this case, we
cannot use an initialization list consisting of midpoint and boundary points any
more. We used an initialization list consisting ofx1

i = −10,x2
i = 0 andx3

i = 10
and again tookli = 2 for i = 1, . . . , n.

MULTILEVEL COORDINATE SEARCH 351

7.5. DISCUSSION

The results show that MCS seems to be strongly competitive with existing al-
gorithms in the case of problems with reasonable finite bound constraints. MCS
with unperturbed box bounds wins in 8 of 9 test cases against every compet-
ing algorithm and is only beaten once by Perttunen–Stuckman for the remain-
ing test function. MCS with perturbed box bounds still wins against all compet-
ing algorithms for four test functions. Only the results for Shekel’s functions and
Shubert’s function seem to depend heavily on the choice of the box bounds, but
they are comparable with the results of some other algorithms. DIRECT is also
sensitive to perturbation of the box bounds (Jones, personal communication).

For unconstrained problems of dimensionn > 4, the performance of MCS is
less satisfactory. The reason is that in the exploration of an unbounded domain, it
is easy to miss the region where the global minimum lies if one has already found a
low-lying nonglobal minimizer. It seems that the MCS algorithm works reasonably
well when the global minimizer can be localized reasonably well by the bound
constraints, but not if the region containing the global minimizer is elusive.

In our MATLAB version of MCS, the non-vectorizable loops lead to a significant
overhead per function value. As the algorithm proceeds, the number of function
values per sweep decreases, but the time spent per sweep does not become much
shorter. This is due to the fact that, at later stages, the case that a box is pro-
cessed without being split occurs more frequently. Since loops and conditional
statements are executed in C much faster than in MATLAB , a C implementation of
the algorithm would drastically reduce the overhead.

7.6. FURTHER TEST PROBLEMS

The Dixon and Szegö (1978) test set has been criticized for containing mainly
easy test problems. A more challenging test set was used in the first contest on
evolutionary optimization (ICEO) at the ICEC’96 conference; cf. Storn and Price
(1996). This test bed contains five problems, each in a 5-dimensional and a 10-
dimensional version, and on these test functions, MCS showed some limitations.
The names and default box bounds of the ICEO test functions are given in Table 3,
and the results are shown in Table 4. The first two lines in Table 4 are results, taken
from Storn and Price (1996), of two different versions of DE.

We applied MCS with three different choices of the initialization list to the
ICEO test functions. MCS1 is the standard version with midpoints and boundary
points. For MCS2, we tookx1

i = 5
6ui + 1

6vi , x
2
i = 1

2(ui + vi), x3
i = 1

6ui + 5
6vi ,

li = 2, i = 1, . . . , n, i.e., the points are uniformly spaced but do not include the
boundary points.

For MCS3, we generated an initialization list with the aid of line searches.
Starting with the absolutely smallest point in[u, v], we made line searches with
gls with smaxls = 25 andnloc = 5 along each coordinate, where the best point
was taken as starting point for the next line search. The parameternloc in gls

352 W. HUYER AND A. NEUMAIER

Table 3. ICEO test functions and their box bounds

Problem Name Box bounds

1 Sphere model [−5,5]n
2 Griewank’s function [−600,600]n
3 Shekel’s foxholes [0,10]n
4 Michalewicz’s function [0, π]n
5 Langerman’s function [0,10]n

determines how local or global the line search is since the algorithm tries to find up
to nloc minima withinsmaxls function values. For the line searches in the local
search method described in Section 5,nloc = 1 was taken (entirely local line
search). For each coordinatei, all local minimizers found by the line searches were
put into the initialization list, and if their number was less than three, they were
supplemented with the values obtained fromgls closest toui andvi.

Moreover, since some of the ICEO functions are considered to be hard prob-
lems, we also applied MCS with a larger number of levels, namelysmax = 10n.
Again we used the three different initialization lists defined above and added the
results to Table 4 as MCS4, MCS5 and MCS6, respectively.

Table 4. Number of function values for the ICEO functions

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

5D 10D 5D 10D 5D 10D 5D 10D 5D 10D

DE1 736 1892 5765 13508 76210 –1 1877 10083 5308 44733

DE2 463 1187 5157 16228 67380 –2 2551 18158 4814 –3

MCS1 61 142 – – 30050 – – – – –

MCS2 62 142 1682 20904 1057 83713 25105 – – –

MCS3 26 51 – – 32901 – 1912 – – –

MCS4 68 162 1271 15661 43377 – – – – –

MCS5 68 162 1463 96903 1484 – 38826 – – –

MCS6 26 51 – 46168 48424 – 1851 – – –

1 744250;2 203350;3 174006 function values.
A dash indicates that a global minimizer was not found after 100 000 function calls.

For the ICEO functions, the uniformly spaced initialization list not containing
any boundary points turned out to be most successful since these functions do not
have any global minimizers at the boundary. Building an initialization list with
the aid of line searches did not pay except for the easy ICEO1 function, where

MULTILEVEL COORDINATE SEARCH 353

the minimizer was already found by the line searches, and the separable ICEO4
function. Moreover, taking a largersmax yielded an improvement only for ICEO2.

Finally, we applied MCS to the testbed #1 used by Storn and Price (1997). The
names and box bounds are shown in Table 5, and their definition can be found
in Storn and Price (1997). Problem 7 is a shifted version of ICEO2 forn = 10.
Problems 8 and 9 have general constraints and were therefore not used here.

Table 5. Testbed #1 of Storn and Price (1997), dimensions and box bounds.

Problem Name Dimensionn Box bounds

1 Sphere 3 [−5.12,5.12]n
2 Rosenbrock 2 [−2.048,2.048]n
3 Step 5 [−5.12,5.12]n
4 Quartic with random noise 30 [−1.28,1.28]n
5 Shekel’s foxholes 2 [−65.536,65.536]n
6 Corana’s parabola 4 [−1000,1000]n
7 Griewank’s function 10 [−400,400]n
8 Zimmerman’s problem 2 constraints

9 Polynomial fit 9, 17 constraints

The first three lines of Table 6 are taken from Storn and Price (1997). ANM
denotes the annealed Nelder & Mead strategy of Press et al. (1992) and ASA the
Adaptive Simulated Annealing method by Ingber (1989; 1996).

Table 6. Number of function values for the Storn and Price functions.

1 2 31 42 5 61 7

ANM 95 106 90258 – – – –

ASA 397 11275 354 4812 1379 3581 –

DE 406 654 849 859 695 841 12752

MCS 10 111 45 673 3210 45 –

1 discontinuous test function;2 noisy test function.
A dash indicates that a global minimizer was not found after 100 000
function calls.

For MCS, we used an initialization list consisting of midpoint and boundary
points. However, for the functions where a known global optimizer happens to be
among the points in the initialization list, a different initialization list withLi = 3,
i = 1, . . . , n, was chosen. Problem 4 contains a random variable, and the result
presented for MCS was averaged over 25 runs, where convergence was defined
as reaching a point with function value6 15. Problem 1 has a quadratic objective

354 W. HUYER AND A. NEUMAIER

function, hence is easy for MCS, and Problem 3 is easy for MCS since the objective
function is monotonous.

8. Conclusions

The multilevel coordinate search algorithm MCS, presented in this paper, has ex-
cellent theoretical convergence properties if the function is continuous in the neigh-
borhood of a global minimizer. In the current implementation1, our test results
show that MCS is strongly competitive with existing algorithms in the case of
problems with reasonable finite bound constraints. In our comparison, MCS out-
performs the competing algorithms almost always on the classical test problems
set of Dixon and Szegö (1978) with bound constraints.

For unconstrained problems of dimensionn > 4, the performance of MCS
is less satisfactory, since in the exploration of an unbounded domain, it is easy to
miss the region where the global minimum lies if one has already found a low-lying
nonglobal minimizer. The same problem appears for some hard test problems with
a huge number of local minima. However, whenever the global minimizer is found
in these cases, the number of function evaluations is usually much smaller than for
competing algorithms.

9. Acknowledgments

The authors gratefully acknowledge partial support of this research by the Aus-
trian Fonds zur Förderung der wissenschaftlichen Forschung (FWF) under grant
P11516-MAT.

References

Bélisle, C.J.P., Romeijn, H.E. and Smith, R.L. (1990), Hide-and-Seek: a Simulated Annealing
Algorithm for Global Optimization, Technical Report 90-25, Department of Industrial and
Operations Engineering, University of Michigan.

Boender, C.G.E., Rinnoy Kan, A.H.G., Stougie, L. and Timmer, G.T. (1982), A Stochastic Method
for Global Optimization,Mathematical Programming22, 125–140.

Boender, C.G.E. and Romeijn, H.E. (1995), Stochastic Methods, in Horst, R. and Pardalos, P.M.
(eds.),Handbook of Global Optimization, Kluwer, Dordrecht, 829–869.

Brent, R.P. (1973),Algorithms for Minimization without Derivatives, Prentice-Hall, Englewood
Cliffs, N.J.

Csendes, T. and Ratz, D. (1997), Subdivision Direction Selection in Interval Methods for Global
Optimization,SIAM Journal on Numerical Analysis34, 922–938.

Dixon, L.C.W. and Szegö, G.P. (1978), The Global Optimization Problem: an Introduction, in Dixon,
L.C.W. and Szegö, G.P. (eds.),Towards Global Optimisation 2, North-Holland, Amsterdam, 1–
15.

Elster, C. and Neumaier, A. (1995), A Grid Algorithm for Bound Constrained Optimization of Noisy
Functions,IMA Journal of Numerical Analysis15, 585–608.

1 Available fromhttp://solon.cma.univie.ac.at/~neum/software/mcs

MULTILEVEL COORDINATE SEARCH 355

Goertzel, B. (1992), Global Optimization by Multilevel Search,Journal of Optimization Theory and
Applications75, 423–432.

Hansen, E.R. (1992),Global Optimization Using Interval Analysis, Dekker, New York.
Horst, R. and Tuy, H. (1996),Global Optimization. Deterministic Approaches, (3rd ed.), Springer,

Berlin.
Ingber, L. (1989), Very Fast Simulated Re-Annealing,Mathematical and Computer Modelling12,

967–973.
Ingber, L. (1996), Adaptive Simulated Annealing (ASA): Lessons Learned,Control and Cybernetics

25, 33–54.
Jones, D.R., Perttunen, C.D. and Stuckman, B.E. (1993), Lipschitzian Optimization without the

Lipschitz Constant,Journal of Optimization Theory and Applications79, 157–181.
Kostrowicki, J. and Piela, L. (1991), Diffusion Equation Method of Global Minimization: Per-

formance on Standard Test Functions,Journal of Optimization Theory and Applications69,
269–284.

Michalewicz, Z. (1996),Genetic Algorithms + Data Structures = Evolution Programs, 3rd ed.,
Springer, Berlin.

Migdalas, A., Pardalos, P.M. and Värbrand, P. (1998),Multilevel Optimization: Algorithms and
Applications, Kluwer, Dordrecht.

Nemhauser, G.L. and Wolsey, L.A. (1988),Integer and Combinatorial Optimization, Wiley, New
York.

Perttunen, C.D. (1990),Global Optimization Using Nonparametric Statistics, PhD Thesis, University
of Louisville.

Perttunen, C.D. and Stuckman, B.E. (1990), The Rank Transformation Applied to a Multiunivariate
Method of Global Optimization,IEEE Transactions on Systems, Man, and Cybernetics20, 1216–
1220.

Pintér, J.D. (1996),Global Optimization in Action, Kluwer, Dordrecht.
Pintér, J.D. (1996), Continuous Global Optimization Software: a Brief Review,Optima52, 1–8.
Powell, M.J.D. (1964), An Efficient Method for Finding the Minimum of a Function of Several

Variables without Calculating Derivatives,Computer Journal7, 155–162.
Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992),Numerical Recipes in C,

(2nd ed.), Cambridge University Press, Cambridge.
Ratz, D. and Csendes, T. (1995), On the Selection of Subdivision Directions in Interval Branch-and-

Bound Methods for Global Optimization,Journal of Global Optimization7, 183–207.
Snyman, J.A. and Fatti, L.P. (1987), A Multi-Start Global Minimization Algorithm with Dynamic

Search Trajectories,Journal of Optimization Theory and Applications54, 121–141.
Storn, R. and Price, K. (1996), Minimizing the Real Functions of the ICEC’96 Contest by Differential

Evolution, in Proceedings of the 1996 IEEE Conference on Evolutionary Computation, IEEE
Press, N.J., 842–844.

Storn, R. and Price, K. (1997), Differential Evolution – a Simple and Efficient Heuristic for Global
Optimization over Continuous Spaces,Journal of Global Optimization11, 341–359.

Vavasis, S.A. (1995), Complexity Issues in Global Optimization: a Survey, in Horst, R. and Pardalos,
P.M. (eds.),Handbook of Global Optimization, Kluwer, Dordrecht, 27–41.

Vicente, L.N. and Calamai, P.H. (1994), Bilevel and Multilevel Programming: a Bibliography
Review,Journal of Global Optimization5, 291–306.

Yao, Y. (1989), Dynamic Tunneling Algorithm for Global Optimization,IEEE Transactions on
Systems, Man, and Cybernetics19, 1222–1230.

